Data Science with R Syllabus
Module 1: Introduction to Data Science
	- What is Data Science?
- What is Machine Learning?
- What is Deep Learning?
- What is AI?
- Data Analytics & it’s types
Module 2: Introduction to R 
	- What is R?
- Why R?
- Installing R
- R environment
- How to get help in R
- R Studio Overview
Module 3: R Basics 
	-  Environment setup
- Data Types
- Variables Vectors
- Lists
- Matrix
- Array
- Factors
- Data Frames
- Loops
- Packages
- Functions
- In-Built Data sets
Module 4: R Packages  
	- Data Visualization
	
	
- Machine Learning
	
	
- Other Miscellaneous R Packages
	
	
- More R Packages!
	
	
Module 5: Importing Data 
	- Reading CSV files
- Writing data to csv file
- Reading data from RDBMS 
- Writing data into RDBMS
Module 6: Manipulating Data
	- Selecting rows/observations
- Rounding Number
- Selecting columns/fields
- Merging data
- Data aggregation
- Data munging techniques
Module 7: Statistics Basics 
	- Central Tendency
	
		- Mean
- Median
- Mode
- Skewness
- Normal Distribution
 
-  Probability Basics
	
		- What does mean by probability?
- Types of Probability
- ODDS Ratio?
 
- Standard Deviation
	
		- Data deviation & distribution
- Variance
 
- Bias variance Trade off
	
	
- Distance metrics
	
		- Euclidean Distance
- Manhattan Distance
 
- Outlier analysis
	
		- What is an Outlier?
- Inter Quartile Range
- Box & whisker plot
- Upper Whisker
- Lower Whisker
- Scatter plot
- Cook’s Distance
 
- Missing Value treatments
	
		- What is a NA?
- Central Imputation
- KNN imputation
- Dummification
 
- Correlation
	
		- Pearson correlation
- Positive & Negative correlation
 
Module 8: Error Metrics 
	- Classification
	
		- Confusion Matrix
- Precision
- Recall
- Specificity
- F1 Score
 
- Regression
	
	
Module 9: Machine Learning - Supervised Learning
	- Linear Regression
	
		- Linear Equation
- Slope
- Intercept
- R square value
 
-  Logistic regression
	
		- ODDS ratio
- Probability of success
- Probability of failure
- ROC curve
- Bias Variance Tradeoff
 
Module 10 Machine Learning - Unsupervised Learning 
	- K-Means
- Hierarchical Clustering
Module 11: Machine Learning using R 
	- Random forest
- Naïve Bayes